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A theory intended for slow, dense flows of cohesionless granular materials is devel-
oped for the case of planar deformations. By considering granular flows on very fine
scales, one can conveniently split the individual particle velocities into fluctuating and
mean transport components, and employ the notion of granular temperature that
plays a central role in rapid granular flows. On somewhat larger scales, one can think
of analogous fluctuations in strain rates. Both kinds of fluctuations are utilized in the
present paper. Following the standard continuum approach, the conservation equa-
tions for mass, momentum and particle translational fluctuation energy are presented.
The latter two equations involve constitutive coefficients, whose determination is one
of the main concerns of the present paper. We begin with an associated flow rule for
the case of a compressible, frictional, plastic continuum. The functional dependence
of the flow rule is chosen so that the limiting behaviours of the resulting constitutive
relations are consistent with the results of the kinetic theories developed for rapid
flow regimes. Following Hibler (1977) and assuming that there are fluctuations in the
strain rates that have, for example, a Gaussian distribution function, it is possible
to obtain a relationship between the mean stress and the mean strain rate. It turns
out, perhaps surprisingly, that this relationship has a viscous-like character. For low
shear rates, the constitutive behaviour is similar to that of a liquid in the sense that
the effective viscosity decreases with increasing granular temperature, whereas for
rapid granular flows, the viscosity increases with increasing granular temperature as
in a gas. The rate of energy dissipation can be determined in a manner similar to
that used to derive the viscosity coefficients. After assuming that the magnitude of
the strain-rate fluctuations can be related to the granular temperature, we obtain
a closed system of equations that can be used to solve boundary value problems.
The theory is used to consider the case of a simple shear flow. The resulting ex-
pressions for the stress components are similar to models previously proposed on a
more ad hoc basis in which quasi-static stress contributions were directly patched to
rate-dependent stresses. The problem of slow granular flow in rough-walled vertical
chutes is then considered and the velocity, concentration and granular temperature
profiles are determined. Thin boundary layers next to the vertical sidewalls arise with
the concentration boundary layer being thicker than the velocity boundary layer.
This kind of behaviour is observed in both laboratory experiments and in granular
dynamics simulations of vertical chute flows.
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1. Introduction

1.1. Kinetic theories for rapid granular flows

Kinetic theories have been developed to treat rapid flows of granular materials for
moderate and low concentrations (Savage & Jeffrey 1981; Jenkins & Savage 1983; Lun
et al. 1984; Jenkins & Richman 1985; Jenkins 1987a,b; Savage 1995; Goldshtein &
Shapiro 1995; Goldhirsch 1995; Goldshtein et al. 1995; Sela, Goldhirsch & Noscowicz
1996; Sela & Goldhirsch 1998). They are usually based on hard sphere models
previously developed for dense fluids at the molecular level. We note that these
treatments for dilute and dense gases, such as the Chapman–Enskog approximate
solution of the Boltzmann equation, can be regarded as power series expansions in
Knudsen number (cf. Woods 1993; Chapman & Cowling 1970). The kinetic energy
associated with the translational velocity fluctuations of the granular particles has an
obvious analogy with the definition of the temperature in a gas at the molecular level.
We define the particle velocity fluctuation c = (v − u), where v is the instantaneous
particle velocity, u = 〈v〉 is the mean transport velocity and the angle brackets
designate an ensemble average. The term granular temperature has been associated
with the mean-square particle velocity fluctuations. We can define (for the three-
dimensional case) a translational granular temperature T = 〈c2〉/3, such that 3T/2 is
the specific kinetic energy of the translational velocity fluctuations.

The particles involved in real granular flows are inelastic and have some finite
roughness. Thus, when grains collide and rub against one another during flow,
a significant amount of energy dissipation occurs. The need to account for this
energy dissipation is the main difference between rapid granular flow and molecular
modelling. The granular flow kinetic theories can be considered as perturbations of
the case of perfectly elastic particles and the dissipation should be ‘small’ in some
sense for the analyses to be valid. This corresponds to small values of the parameter
R, where R is the product of a typical shear-rate, (du/dy), times the particle diameter d
divided by the square root of the granular temperature; i.e. R = (du/dy) d/T 1/2 � 1.
In the case of the shear flow of a gas, R is very small and the expansion in powers of
Knudsen number (or equivalently R) is quite legitimate. For granular flows, because
of the relatively large dissipation, the granular temperature tends to decay unless it
is maintained by shear work or an external source of energy such as vibration at the
boundary walls. In some instances the values of R are not always small and can, in
fact, be of order unity (Savage & Jeffrey 1981). As a result, some (for example, Clift
1993; Hinch 1995) have raised questions about the validity of granular flow kinetic
theory approaches. However, numerous comparisons (see, for example, Walton &
Braun 1986a,b; Walton, et al. 1987; Lun 1991; Savage 1992; Lun & Bent 1994;
Lan & Rosato 1995) of the kinetic theory results with experimental measurements
and granular dynamics computer simulations (which are free of the ‘questionable’
assumptions made in the kinetic theories) have shown quite good agreement for cases
when the dissipation is relatively small and the particle concentrations range from
small to moderate.

The above mentioned comparisons used the earlier kinetic theories that assumed
the granular temperature to be isotropic. It is evident from the computer simulations
that anisotropy occurs in the granular temperature as well as the normal stresses
and that these anisotropies are particularly prominent at low concentrations. These
observations led to the development of more general kinetic theories (Jenkins &
Richman 1988; Richman 1989; Richman & Chou 1992; Goldhirsch & Sela 1996;
Sela et al. 1996) to handle low densities and more dissipative particles. Through the
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introduction of an anisotropic Maxwellian velocity distribution function (Jenkins &
Richman 1988; Richman 1989; Richman & Chou 1992), and by constructing the
Chapman–Enskog expansion in a manner appropriate for granular materials and
carrying it out to Burnett order (Goldhirsch & Sela 1996; Sela et al. 1996), these
more elaborate kinetic theories were able predict the large normal stress differences
observed at low concentrations. Hopkins & Shen (1992) have compared shear stresses,
normal stresses and stress ratios predicted from the kinetic theory of Richman & Chou
(1992) with their molecular dynamics and their Monte Carlo computer simulations
for particles that range from nearly elastic (coefficient of restitution, e = 0.9) to very
dissipative particles (e = 0.3). They rightly characterize the agreement between the
three data sets as remarkable.

1.2. Extensions to treat fluid–solid mixtures

The single-phase granular flow kinetic theories have been extended to include the
effects of interstitial fluids by adding extra terms to account for particle drag forces
and energy dissipation arising from the differences between the fluid and particle
velocities. The effective solids pressure and the effective solids viscosity can then be
calculated in a systematic way. Sinclair & Jackson (1989) studied gas-particle flow
in a vertical pipe and Louge, Mastorakos & Jenkins (1991) considered problems of
pneumatic transport of particles in a turbulent fluid. A related two-phase flow analysis
has been developed by Ding & Gidaspow (1990) (also, see Gidaspow 1994) to treat
bubbling fluidized beds. The solids viscosities and stresses were obtained from the
granular flow kinetic theory of Lun et al. (1984). These papers dealing with solid–fluid
mixtures treated relatively massive particles in the presence of a gaseous fluid. Jenkins
& McTigue (1990) and McTigue & Jenkins (1992) have given heuristic arguments
to establish the form of the constitutive relations for concentrated suspensions of
particles in liquids at low shear-rates corresponding to Bagnold’s (1954) macro–
viscous regime. Bagnold found that a distinctive feature of this flow regime was the
existence of a dispersive normal stress that depended linearly upon shear-rate and was
proportional to the shear stress. Jenkins & McTigue (1990) were able to find plausible
and consistent functional forms for the transport coefficients by using dimensional
and heuristic arguments. In a later analysis (Jenkins & McTigue 1995) they were able
to determine more detailed, quantitative results by an approach analogous to those
taken in the granular flow kinetic theories.

1.3. Quasi-static stress contributions and particle interactions

It is traditional to think of two limiting granular flow regimes: the fully dynamic
rapid flow regime (called the grain-inertia regime by Bagnold 1954) and the quasi-
static, rate-independent plastic regime (which has received extensive attention in the
soil mechanics literature). Many practical flow situations, particularly those that
are strongly affected by gravitational forces, fall into a transitional regime that
lies between these two limiting flow regimes. It is extremely difficult to construct
theoretical models of this flow regime and analyses performed to date have consisted
of simple ad hoc patching together of results taken from the grain-inertia and the
quasi-static regimes. Savage (1983) suggested that, for the case of a free-surface chute
flow in a gravitational field, one might represent the total stresses as the linear sum
of a rate-independent, dry friction part plus a rate-dependent ‘viscous’ part obtained
from the high shear rate granular flow kinetic theories. The magnitude of the rate-
independent contribution was chosen such that the sum of the two parts satisfied
the overall momentum equation perpendicular to the flow direction. More detailed
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analyses based on this approach were presented by Johnson & Jackson (1987) and
Johnson, Nott & Jackson (1990). While reasonable results were obtained for these
particular problems, it is not obvious how the approach could be extended to handle
more general kinds of flow problems.

The ‘hard particle’ assumption is a key element in the above mentioned rapid gran-
ular flow kinetic theories. In this limit of infinitely stiff particles, the collisional contact
times tend to zero and thus only binary collisions need to be considered. The particle
collision dynamics can be treated in a straightforward way and the evaluation of the
Boltzmann collision integral and the determination of various transport coefficients
are difficult but manageable. When the concentration is high and the deformation
rates are low as in the quasi-static or transitional regimes, the particles typically
experience multiple contacts that are long lasting rather than identifiable, short term,
‘collisions’. One cannot analyse the particle interactions in a straightforward way as
in the case of rapid flow. The particle interactions are not limited to binary ones. In
experimental studies using photo-elastic disks and in two-dimensional computer sim-
ulations one can observe the development of force networks or chains involving large
numbers of particles (Drescher & De Josselin De Jong 1972; Oda, Nemat-Nasser &
Konishi 1985; Behringer & Baxter 1994; Gutfraind, Pouliquen & Savage 1995). Some
particles are highly loaded and form chains, whereas others in between the chains are
subjected to relatively small loads. When the bulk material deforms, particle contacts
fade, new ones are generated, and the structure of the force networks has an appar-
ently random transient character. While the force networks are clearly apparent in
these two-dimensional disk-like systems, one should be cautious about inferring too
much about the behaviour of more common, physically realistic, three-dimensional
particles on the basis of these observations. In the three-dimensional case it is likely
that the contact forces or stresses would be more homogeneous and that an isolated
force perturbation or stress concentration would have a smaller domain of influence.

1.4. Present investigation

Because of (i) the complexity of the particle geometric configuration and its changing
pattern, (ii) the long-range nature of the particle interactions, and (iii) the problems
of handling the dynamics in such slow, closely packed flows, it is difficult to envisage
how one might analyse these problems by other than stochastic approaches that
are less detailed and less precise than, for example, the Chapman–Enskog procedure
(Chapman & Cowling 1970). In an earlier version of the present paper, a preliminary
attempt was made to formulate the simplest kind of analysis for slow, granular flows
at low stress levels based on equations of the Fokker–Planck or Smoluchowski type
(Eisenschitz 1958; Cole 1967; McQuarrie 1976). While it contained a number of ad
hoc assumptions, it did yield the usual forms of the conservation equations for mass,
momentum and translational velocity fluctuation energy in terms of stresses, energy
fluxes rates of energy dissipation, etc. However, in contrast to the rapid granular flow
kinetic theories, this stochastic approach could not provide the detailed forms of the
constitutive coefficients, and it was necessary to determine them by separate analyses.

For reasons of brevity in the present paper, the conservation equations are presented
following a simple, more standard continuum approach, but the essential issue is again
that of determining the constitutive equations. Consideration is given to fluctuations
in velocities at the individual particle level, as well as fluctuations in strain rate at a
somewhat coarser scale. We approach the problem from the limit of low deformation
rates and start with a compressible, frictional, plastic continuum that satisfies an
associated flow rule. The functional dependence of the flow rule is chosen so that the
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Figure 1. Diagram of the system P with surface element dS and surface normal n, and the system
element P associated with the volume element dr.

limiting behaviours of the resulting constitutive relations are consistent with the results
of the kinetic theories developed for rapid flow regimes. Following Hibler (1977), and
assuming that there are fluctuations in the strain rates that have, for example,
a Gaussian distribution function, it is possible to obtain a relationship between the
mean stress and the mean strain rate, and hence to determine the viscosity coefficients.
The rate of energy dissipation can be determined in a similar manner. With further
assumptions that express the magnitude of the strain-rate fluctuations in terms of the
granular temperature, the governing system of equations is closed. The resulting theory
is first applied to consider a simple shear flow. The expressions derived for the stress
components are compared to previous ad hoc models that directly patch together
rate–independent and rate-dependent stress contributions. Next, the problem of slow
granular flow in rough walled, vertical chutes is studied. The calculated velocity,
concentration and granular temperature profiles exhibit thin, boundary layers adjacent
to the vertical sidewalls. The predicted boundary layers have characteristics similar
to those observed in laboratory experiments and in granular dynamics simulations.

2. Analysis
2.1. Conservation equations

For completeness we present a compact derivation of the governing conservation
equations for mass, momentum and translational velocity fluctuation energy following
the treatment of Woods (1975). Figure 1 shows the system P, a surface element dS
and the outward normal to the surface n. We suppose that the system element P,
associated with the volume element dr, contains a sufficient number of particles so that
‘continuum’ quantities such as density, stresses, etc. can be defined. The instantaneous
velocity of a particle v(r, t) is decomposed into a slowly varying ‘mean’ part u(r, t)
and a rapidly fluctuating part c(r, t),

v(r, t) = u(r, t) + c(r, t), (2.1)

where r is the spatial coordinate and t is time. Taking the average of v(r, t) yields the
definition of u

u = 〈v(r, t)〉, (2.2)

where the angle brackets designate an ensemble average. Note that we can express
the total specific kinetic energy of the particles as

〈v · v〉
2

=
1

2
(u2 + 〈c · c〉) =

u2

2
+

3T

2
, (2.3)
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where 〈c · c〉/2 = 3T/2 is the specific kinetic energy of the translational velocity
fluctuations and T is the granular temperature.

To proceed with the development of the conservation equations, consider Φ(r, t) to
be some property of a clump of the granular material. Then, we can write

dΦ =

(
∂Φ

∂t

)
r

dt+ dr ·
(
∂Φ

∂r

)
t

. (2.4)

Noting that the ‘average’ flow velocity u = dr/dt, we can express the material
derivative at the convected point Pc(r, t) as

DΦ =

(
dΦ

dt

)
Pc

=

(
∂

∂t
+ u · ∇

)
Φ. (2.5)

Now consider the convected derivative of the line element dx

D(dx) =

(
d

dt
dx

)
Pc

=
∂ux

∂x
dx. (2.6)

Similarly, considering the line elements dy and dz yields

D(dy) =
∂uy

∂y
dy and D(dz) =

∂uz

∂z
dz, (2.7)

and making use of these results for the convected derivatives, we obtain

D(dr) = D(dx dy dz) = dr∇ · u. (2.8)

We can consider the material derivative of Φ(r, t) = X(r, t) dr that designates some
physical property of the element P(r, t), and obtain the expression that is used to
generate the conservation equations, i.e.

1

dr
D(X dr) = D(X) +

X
dr

D(dr)

= D(X) +X∇ · u. (2.9)

To obtain the conservation of mass equation, we take X = ρ, the mass density of the
bulk. Thus

D(ρ dr) = drD(ρ) + ρD(dr) = 0, (2.10)

and finally

D(ρ) + ρ∇ · u =
∂ρ

∂t
+ ∇ · (ρ u) = 0. (2.11)

Now let X be the momentum per unit volume ρu. It is changed by (a) the body
forces per unit volume ρ g dr, where g is the gravitational acceleration, and (b) the
surface forces. The pressure tensor p is defined such that n·p dS is the force transmitted
across a surface element n dS in the positive direction along n. Hence, the surface
integral of −n · p dS over the system P is the force acting on the material inside P by
the material outside P. From the Divergence Theorem we infer that −∇ · p dr is the
corresponding force on the element P. We thus obtain

1

dr
D(ρu dr) = D(ρu) + ρu∇ · u = ρg− ∇ · p, (2.12)

which after expanding and making use of the continuity equation (2.11) can be
reduced to the standard form of the linear momentum equation

ρD(u) = ρg− ∇ · p. (2.13)
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It can be expressed in Cartesian tensor notation as

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= ρgi − ∂pij

∂xj
. (2.14)

Recall that the instantaneous velocity vi can be expressed in terms of a mean part
ui and a fluctuating part ci, such that 〈v〉 = u and the granular temperature T = c2/3.
Suppose we now take X to be the total kinetic energy per unit volume such that

X = ρ〈v · v〉/2 = ρ
(
u2 + 3T

)
/2. (2.15)

This kinetic energy is changed by: (a) work that the body force does on the element
P, (b) work and energy transfers to P by the contiguous particles, and (c) interparticle
dissipation within P. Expressing these contributions more explicitly we can write:

(a) The body force does work at the rate ρg · u dr on the material within P.
(b) (i) The flow of collisional fluctuation energy adds energy at the rate −∇ · q dr,

where q is the energy flux vector. (ii) The mechanical force that is transmitted across
a convected surface element n dS does work at a rate −(n · p dS) · u on material on
the negative side of the element. Hence the surface integral of −n · p · u dS over the
system is the rate at which the surface stress does work on the material inside P. By
the divergence theorem, −∇ · (p · u) dr is the rate that surface stresses do work on the
element P.

(c) Because of inelastic interparticle collisions and frictional rubbing, energy is
dissipated at the rate γ dr, where γ is the rate of energy dissipation per unit volume.

Setting the rate of change of the total kinetic energy per unit volume to the sum
of the above contributions we obtain

1

dr
D
(
ρ
[
u2 + 3T

]
/2
)

= ρg · u− ∇ · q − ∇ · (p · u)− γ. (2.16)

By making use of the continuity (2.11) and linear momentum (2.13) equations, the
total translational energy equation can be written in the following form

ρD

(
u2

2
+

3T

2

)
= ρg · u− ∇ · q − ∇ · (p · u)− γ. (2.17)

Taking the vector product of u and the momentum equation (2.13) yields

ρD

(
u2

2

)
= ρg · u− u · ∇ · p. (2.18)

Subtracting this from (2.16), and making use of the vector relation

∇ · (p · u)− u · ∇ · p = pT:∇u, (2.19)

where pT designates the transpose of p, yields the translational fluctuation energy
equation

ρD

(
3T

2

)
= −pT :∇u− ∇ · q − γ. (2.20)

Assuming the pressure tensor to be symmetric, pij = pji, we can express (2.20) in
Cartesian tensor notation as

3

2
ρ

(
∂T

∂t
+ uj

∂T

∂xj

)
= −pij ∂ui

∂xj
− ∂qj

∂xj
− γ. (2.21)
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Figure 2. Mohr’s circle of stress in (σ, τ)-space and yield lines for a cohesionless granular material
with an internal friction angle φ.

2.2. Yield function and constitutive relations

The linear momentum and the translational fluctuation energy equations just pre-
sented contain the pressure tensor p, the energy flux vector q, and the rate of energy
dissipation per unit volume γ. Explicit constitutive equations for p, q, and γ and
the associated constitutive coefficients are now derived. The analysis begins with an
associated flow rule similar in form to what is typically used to model a compress-
ible, frictional, plastic continuum undergoing quasi-static deformations. By assuming
that there are fluctuations in strain rate, and then averaging, we can obtain a rela-
tionship between mean stress and the mean strain rate. It is common to think of
rate-independence in connection with perfectly plastic, slow deformation of granular
materials. However, we show, following Hibler (1977), that by introducing strain-rate
fluctuations into the constitutive equations and taking statistical averages we can
obtain a rate-dependent, viscous-like behaviour even for relatively small deformation
rates. Some care is taken in formulating the functional dependence of the flow rule
so that the behaviour at high shear rates is consistent with the results of the kinetic
theories for granular flows.

In formulating the yield function, we shall make use of the ideas of critical state
soil mechanics (Schofield & Wroth 1968; Chen & Mizuno 1990; Wood 1990; also
see Lade & Prabucki 1995, for more recent references) and the work of Hibler (1977,
1979). For simplicity, attention is restricted in the present paper to the case of two-
dimensional flows. In this planar case, we define the mean stress p, and the stress
difference or maximum shear stress q as

p =
σ1 + σ2

2
, q =

σ1 − σ2

2
, (2.22)

where σ1 and σ2 are the major and minor principal stresses respectively (with tensile
stresses taken as positive). Figure 2 illustrates Mohr’s circle of stress in (normal
stress σ, shear stress τ)-space and the yield lines for a cohesionless granular material
with an internal friction angle of φ. The radius of the Mohr’s circle is given by
r = q = (σ1 − σ2)/2 and r = −p sinφ.

Figure 3 shows an elliptical yield function in (p, q)-space corresponding to a par-
ticular set of values of solids fraction ν, and granular temperature T . As will be
discussed subsequently, the size of the yield envelope grows with increasing solids
fraction and granular temperature. In the present work, an elliptical yield envelope
is chosen for reasons of simplicity; but, we note that other shapes, such as teardrops
and parabolas, are also commonly used (Wood 1990; Lade & Prabucki 1995; Bol-
zon, Schrefler & Zienkiewicz 1996). Elliptical yield surfaces often have been used
in the past for soil mechanics problems (Schofield & Wroth 1968; Mroz, Norris &
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Figure 3. Elliptical yield function in (p, q)-space for a particular set of values of solids fraction ν,
and granular temperature T . An infinite set of nested yield functions exists, corresponding to other
values of solids fraction and granular temperature.

Zienkiewicz 1979; Chen & Mizuno 1990; Wood 1990). The commercial finite element
package ABAQUS (1994) uses elliptical yield functions to model pressure-dependent
yielding in materials including soils and foams. Hibler’s (1979) elliptical yield function
is the standard approach used to model the internal stresses developed in pack ice
floating on arctic waters.

The critical state soil mechanics models were formulated in part to predict volume
changes associated with different kinds of loading histories (see Wood 1990 for a
lucid discussion of these models). One thinks of families of yield surfaces and plastic
potential curves that are expressed in terms of parameters that control the sizes of
particular members of these surfaces. By making the assumption of an associated flow
rule, in which the plastic potential is equal to (i.e. ‘associated’ with) the yield function,
the ‘plastic’ strains or strain rates can be derived from a plastic potential function
by differentiating the plastic potential with respect to the stress components. More
specifically, for associated flow the material obeys the postulate of normality in which
the plastic strain increment is in the direction of the outward normal to the yield
surface. To clarify this, let us consider a point on the yield locus shown in figure 3
and examine the projection of the outward normals to the yield locus on the p-axis.
If this projection is negative (outward away from the origin) then compaction will
occur during deformation, i.e. ν will increase. If the projection is positive (toward the
origin), then dilation will occur during deformation and ν decreases. At the so-called
critical state, the normal is perpendicular to the p-axis and deformation occurs without
change in volume. Along the critical state line (cf. Figure 3) we write |q| = −p sinφ,
where φ is the critical state internal friction angle. This expression has the same form
as the Mohr–Coulomb relation for an incompressible, cohesionless granular material.
However, note that the angle between the critical state line and the p-axis in figure 3
is given by arctan(sinφ).

It should be noted that while the critical state models and the associated flow rule
assumption are extremely useful and illuminating representations of soil behaviour,
they do have their limitations. In the initial, quasi-static yielding of sands involving
relative small strains, the assumption of normality is less appropriate and constitutive
models involving distinctly different shapes for the yield loci and plastic potentials
have been developed (cf. Lade 1977; Vermeer 1984; Lade & Pradel 1990; Pradel &
Lade 1990). The principal axes of stress and strain do not necessarily coincide in
these kinds of models as they do in the case of the associated flow models.

The focus of the present paper is on continued flows that involve very large
strains as well as deformation rates that are considerably larger than those typical
in quasi-static soil mechanics applications. The aim is to develop a simple model
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to handle transitional flows that span the quasi-static and collisional flow regimes.
This is difficult because there is virtually no detailed experimental information to
guide the formulation of constitutive models to handle these flows. While the present
model may not be sufficiently general to accurately predict quasi-static ‘localization’
phenomena such as shear band formation, that is not its purpose. We merely seek
a simple representation of the behaviour for slow, concentrated granular flows that
has a form that can be merged smoothly with the kinetic theory results for rapid,
collisional flows. The main interest of the present paper is in predicting transitional
and rapid flows.

Note that in the kinetic theories for rapid granular flows, the principal axes of stress
and strain rate coincide. As will be seen, the introduction of strain rate fluctuations into
the simple critical state model based on associated flow yields expressions for stresses
that resemble those for a compressible, Newtonian fluid. It is possible to combine these
expressions with the rapid flow kinetic theory results in a straightforward manner.

To proceed, we now define an elliptical yield function in terms of p and q as

F(p, q) = (p+ a)2 + e2q2 − a2 = 0, (2.23)

where e is the ellipticity or the yield curve major to minor axis ratio, and a = a(ν, T )
is the value of p at the centre of the ellipse. On the critical state line shown in figure 3,
p = −a, and e2q2 = a2; hence

|q|
a

=
1

e
= sinφ, (2.24)

where φ corresponds to the value of the internal friction angle on critical state line.
Also, we can express the yield function (2.23) in terms of the stress components σij

referred to an (x, y) coordinate system as

F(σxx, σyy, σxy) =

[
σxx + σyy

2
+ a

]2

+ e2

[(σxx − σyy
2

)2

+ σ2
xy

]
− a2 = 0. (2.25)

Now define the strain rates as

eij =
1

2

[
∂ui

∂xj
+
∂uj

∂xi

]
. (2.26)

In the usual way, the ‘plastic’ strain rates can be derived from a plastic potential
function and we make the assumption of an associated flow rule, in which the plastic
potential is equal to the yield function. Thus, the plastic strain rates are given by

eij = λ
∂F

∂σij
. (2.27)

For example

exx = λ

[
2

(
σxx + σyy

2
+ a

)
+
e2

2
(σxx − σyy)

]
, (2.28)

and we can write down similar expressions for eyy , exy , eyx. Making use of these
expressions for strain rates, solving for stress components in terms of strain rates,
and then substituting in the yield function (2.25) we find

σij = − a
∆

[
2

e2
eij + δij

(
1− 1

e2

)
ekk

]
− δija, (2.29)
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where

∆ =

[
(e2
xx + e2

yy)

(
1 +

1

e2

)
+

4exy
e2

+ 2exxeyy

(
1− 1

e2

)]1/2

. (2.30)

Note that the principal axes of stress and strain rate coincide. As expressed above,
it may be observed that the stresses have a rate-independent form. However, a
viscous-like behaviour can be produced by the procedure described below.

Following Hibler (1977), we assume that there exist fluctuations in the strain rate
eij about the mean value 〈eij〉. The strain rate fluctuations are analogous to the
particle velocity fluctuations c about their mean velocity u. We assume that the strain
rate distribution function f(eij) for the fluctuations is Gaussian (analogous to the
Maxwellian velocity distribution function); hence

f(eij) =
1

ε(2π)1/2
exp

[
−
(
eij − 〈eij〉)2

2ε2

]
, (2.31)

where ε is the standard deviation of the strain rate fluctuations that have been
assumed to be isotropic. Note that ε2 is analogous to the granular temperature T ,
and that eij = eji.

The mean value of stress can be obtained by multiplying σij by f(eij) and integrating
over strain rate space. Hence

〈σij〉 =
1

ε3(2π)3/2

∫
exp

(
−
(
exx − 〈exx〉)2

+
(
eyy − 〈eyy〉)2

+
(
exy − 〈exy〉)2

2ε2

)
×σij dexx deyy dexy. (2.32)

As Hibler (1977) has noted, we can imagine two limiting cases. First, considering
(2.32) for very small strain-rate fluctuations ε, we see that we can replace eij by
〈eij〉 in the expression (2.29) for σij , and thus we obtain a ‘rate-independent’, plastic
behaviour. For values of ε that are large compared to the mean strain rates 〈eij〉,
we can expand the right-hand side of (2.32) in powers of 〈eij〉/ε. This yields, to
first order, a linear viscous behaviour. We can evaluate the first-order terms in a
reasonably straightforward way following Hibler (1977).

For example, consider the expression for 〈σxx〉 from (2.32) which is a function of
〈exx〉, 〈eyy〉, and 〈exy〉. Note that from symmetry

∂〈σxx〉
∂exy

∣∣∣∣
〈e〉→0

=
∂〈σxx〉
∂eyy

∣∣∣∣∣〈e〉→0

= 0, (2.33)

where the subscript 〈e〉 is the mean strain-rate tensor. Hence, to determine 〈σxx〉 to
first order in strain rates, we need only consider the expression

∂〈σxx〉
∂exx

∣∣∣∣〈e〉→0

(2.34)

and evaluate the resulting integral over exx, eyy , exy . For the case in which the
eccentricity e = 1, we can obtain a closed form solution; otherwise we must integrate
numerically. It is convenient to transform to spherical coordinates by introducing

exx = ε r cosψ sin θ, eyy = ε r sinψ sin θ, exy = ε r cos θ, (2.35)

and integrate over 0 < r < ∞, 0 < θ < π, 0 < ψ < 2π.
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3

2

1

25 30 35 40 45

Critical state friction angle, φ (deg.)

4

5

6

ú
í

Figure 5. Variation of the ratio of viscosity coefficients ζ/µ with the critical state friction angle φ.

By proceeding in a similar way to determine 〈σyy〉 and 〈σxy〉 we can write the mean
stress tensor to first order in 〈eij〉 as

〈σij〉 = 2µ〈eij〉+ (ζ − µ)〈ekk〉δij − aδij . (2.36)

This has the same form as the stress–strain-rate relation for a Newtonian viscous
fluid where µ is the shear viscosity and (ζ−µ) is (sometimes) called the bulk viscosity.
These viscosity coefficients have the forms

µ =
aA

ε
, ζ =

aB

ε
, (2.37)

where A and B depend only on the critical state friction angle φ and are determined
by numerical integration. Figures 4 and 5 respectively show the variations of the
coefficient A in the expression for shear viscosity and the ratio of ζ/µ with the critical
state friction angle φ.

We can also calculate energy dissipation due to strain-rate fluctuations in a similar
fashion. Write

σij = 〈σij〉+ σ′ij , eij = 〈eij〉+ e′ij , (2.38)

where the primes designate the fluctuating parts. Thus, the rate of energy dissipation
γ due to fluctuations can be written as

γ = 〈σ′ije′ij〉 = aεD, (2.39)

where the coefficient D is determined by numerical integration and is a function of
the critical state friction angle φ (cf. figure 6).
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Figure 6. Variation of coefficient D appearing in the expression for dissipation with the critical
state friction angle φ.

An explicit form for a(ν, T ) is required. The yield ellipse grows in size with an
increase in solids fraction and also with an increase in granular temperature (which
corresponds to an increase in pressure). We assume that a(ν, T ) is composed of the
sum of these two contributions as follows:

a(ν, T ) = aν(ν) + aT (ν, T ). (2.40)

Schofield & Wroth (1968) suggested a pressure density relation for quasi-static defor-
mations of the form

1

ρ
= A− log p. (2.41)

However, this is not so appropriate for low stress levels. Jenike (1961, 1987) proposed
an expression more suitable for low stresses of the form

ρ = C(p− p0)
β, where β ' 0.05–0.1. (2.42)

Related expressions have been proposed by Cowin (1977), Sundaram & Cowin (1979)
and Kruyt (1990). We shall use a similar expression here:

aν(ν) = a0 log

[
ν∞ − ν0

ν∞ − ν
]
, (2.43)

where a0 is a reference value of a, ν∞ is the solids fraction corresponding to closest
packing, and ν0 is the minimum solids fraction. We add to this a collisional stress
contribution that depends on granular temperature of the form

aT (ν, T ) = ρsν(1 + 2G)T , (2.44)

where ρ = ρsν, ρs is the mass density of individual particles. The collisional stress
contribution (2.44) is taken from the expression for pressure from the granular flow
kinetic theory of Jenkins (1987a) for disks. Note that for the flow of disks, we define
T = 〈c2〉/2. In Jenkins (1987a) the expression for G is given as

G = νg(ν) =
ν(16− 7ν)

16(1− ν)2
, (2.45)

where g(ν) is the radial distribution function at contact. In the present work we
modify this slightly and write

G = νg(ν) =
ν(16− 7ν)

16(1− ν/ν∞)2
, (2.46)
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so that the stresses diverge as the solids fraction approaches the maximum value.
This form of expression for the radial distribution has been used several times in
the past (for example, see Lun & Savage 1987; Lun 1991; Anderson & Jackson
1992; Gidaspow 1994). It makes the collisional contribution (2.44) consistent with the
quasi-static contribution (2.43) in the sense that both diverge as ν → ν∞.

For high deformation rates and large granular temperatures, this collisional term
is dominant and the stresses will tend to the kinetic theory results. Thus, adding the
two contributions (2.43) and (2.44) we obtain

a(ν, T ) = a0 log

[
ν∞ − ν0

ν∞ − ν
]

+ ρsν(1 + 2G)T . (2.47)

We shall now relate the root-mean-square strain-rate fluctuations ε to the granular
temperature T . If we were considering, for example, a gas where there is a wide
separation between length scales associated with particle fluctuations and the length
scales associated with fluctuations in strain rate, there would not necessarily be any
connection between ε and T . However, for granular flows there is not such a wide
disparity between the microscale, i.e. the particle diameter d, and the macroscale,
which typically might be associated with the thickness of a shear layer. Usually shear
layers are found to be of the order of 10 particle diameters in thickness and here it is
plausible to think of a more direct link between ε and T . Notice that the dimensions
of ε are the same as (velocity/length), i.e. the same as T 1/2/d. Here we shall assume
the simple relationship

ε =
βT 1/2

d
, (2.48)

where β is a constant of order unity and d is particle diameter. Using (2.48) we can
write the expression for shear viscosity µ in (2.37) as

µ =
aAd

βT 1/2
. (2.49)

We choose a value of β such that, as T becomes large, the above expression
for shear viscosity µ agrees with the collisional kinetic theory result for disks. The
viscosity from the kinetic theory of Jenkins (1987a) is

µ =

[
1 +

π

8
(G−2 + 2G−1 + 1)

]
ρs d νGT 1/2

π1/2
. (2.50)

For large T , the expression (2.47) for a(ν, T ) takes the form

a(ν, T )→ ρsν(1 + 2G)T . (2.51)

Using this result and equating the two expressions (2.49) and (2.50) for µ we obtain

β =
(1 + 2G)Aπ1/2

G
[
1 + 1

8
π(G−2 + 2G−1 + 1)

] . (2.52)

Conveniently, it is found that β ' 1/4 for solids fractions 0.65 < ν < 0.9.
Also, from Jenkins’ (1987) kinetic theory for disks, the ratio of conductivity k to

shear viscosity µ is

k

µ
=

2
[
1 + 1

4
π(G−2 + 3G−1 + 9/4)

][
1 + 1

8
π(G−2 + 2G−1 + 1)

] , (2.53)

which similarly has a nearly constant value k/µ ' 4 for solids fractions 0.65 < ν < 0.9.
We shall use the same value of this ratio for the present analysis.
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Finally, substituting (2.48) in (2.39), the rate of energy dissipation becomes

γ =
aβT 1/2D

d
. (2.54)

3. Simple shear flow
As a very simple example, we now apply the equations just derived in §2 to consider

the case of simple shear flow (du/dy = const.) in which the granular temperature T
and solids fraction ν are both constant.

After making use of (2.36), the translational fluctuation energy equation (2.21)
reduces to

µ

(
du

dy

)2

− γ = 0. (3.1)

Substituting the expressions (2.49) and (2.54) for µ and γ into (3.1) we obtain

T 1/2 =
d

β

(
A

D

)1/2(
du

dy

)
= dK1/2

(
du

dy

)
, (3.2)

where K = (A/D)/β2. Now making use of (2.49), (3.2) and the expression (2.47) for
a(ν, T ) we can rewrite the shear stress from (2.36) as

σxy = µ
du

dy
= a(AD)1/2

= (AD)1/2

[
a0 log

[
ν∞ − ν0

ν∞ − ν
]

+ ρsν(1 + 2G)d2K

(
du

dy

)2
]
. (3.3)

This has the form of an extended Bingham-type fluid with a power law dependence
on shear rate that has previously been proposed to describe the behaviour of granular
materials (Savage 1979; Takahashi 1981, 1991; Tsubaki & Hashimoto 1983; Chen
1988). For a particular solids fraction ν, the first term on the right-hand side of (3.3)
is a constant term that is independent of shear rate and the second term depends on
the square of the shear rate as in the classical paper of Bagnold (1954). The normal
stresses in the x- and y-directions are equal and given by

σxx = σyy = a, (3.4)

in which a is composed of a rate-independent term and a term that depends on the
square of the shear rate. The ratio of shear to normal stress is a constant given by

σxy

σyy
= (AD)1/2. (3.5)

Figure 7 compares the ratio of shear to normal stress given by (3.5) for critical state
internal friction angles φ = 20◦ and 25◦ with the result given by the granular flow
kinetic theory of Jenkins (1987a) for values of the coefficient of restitution er = 0.7
and 0.8. In the rapid flow regime, er is a parameter that characterizes the energy
dissipation, whereas the critical state internal friction angles φ plays that role in the
present analysis. The important thing to note is that the ratios of shear to normal
stress given by these two analyses are quite similar.
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Figure 7. Ratio of shear to normal stress versus solids fraction. Upper and lower solid lines
correspond to equation (3.5) for critical state internal friction angles φ of 25◦ and 20◦ respectively.
Upper and lower dashed lines correspond to the granular flow kinetic theory of Jenkins (1987a) for
values of the coefficient of restitution er of 0.7 and 0.8 respectively.

4. Vertical channel flow
We now consider slow, steady granular flow down a vertical channel having rough

parallel sidewalls. This is a deceptively simple problem, but a particularly interesting
example because in the slow plastic flow regime it has certain paradoxical aspects
(Savage 1995). Experiments (cf. Takahashi & Yanai 1973; Nedderman & Laohakul
1980; Savage 1979, 1984; Natarajan, Hunt & Taylor 1995; Pouliquen & Gutfraind
1996) have found that the velocity profiles consist of two relatively thin boundary
layers (typically between 5 and 15 particle diameters thick) next to the rough sidewalls,
and a plug-like, uniform-velocity central region. When the gap between the vertical
sidewalls is increased, the width of the central plug flow region is correspondingly
increased while the shear layer thicknesses remain almost constant. Deep down in the
bin where there is no longer any variation of the stresses in the vertical direction, the
equilibrium equations show that for a uniform density of the material, the shear stress
varies linearly across the width of the channel and the normal stress in the horizontal
direction is constant. For a steady, fully developed flow, having the observed velocity
profiles, it is natural to imagine that the shear planes are parallel to the vertical
sidewalls. For a Mohr–Coulomb material yielding in such a way, the ratio of shear
to normal stress on the shear planes would have to be constant. However, this is
in conflict with the variations of shear and normal stresses required to satisfy the
equilibrium equations. The only solution that is realizable is one in which the plug
flow region spans the entire width of the channel, the boundary layers have zero
thickness, and there is slip at the sidewalls. All of the interior material behaves as a
rigid material; the stress states are inside the yield envelope.

For viscous fluid flow, of course, no such dilemma occurs. For rapid granular flows,
which have certain viscous-like characteristics and more importantly can generate
‘dispersive’ normal stresses, it is also possible to find solutions for stress and velocity
distributions. Hui & Haff (1986) have analysed vertical channel flow using Haff’s
(1983) heuristic kinetic grain flow theory and found plausible results, although there
are some inconsistencies for the case of dissipative particles when the granular
temperature (which is responsible for the generation of the normal stresses) goes
to zero in the central region in wide channels. Savage (1995) has suggested that
consideration of stress and velocity fluctuations for the case of slow, quasistatic flows
may be necessary to analyse these flows correctly. Pouliquen & Gutfraind (1996)
have attempted to treat the vertical channel problem using an adaptation of Eyring’s
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Figure 8. Definition sketch for rough walled vertical bin of half-width b.

(Krausz & Eyring 1975) rate theory originally developed to describe the viscosity of
liquids. However the leap from Eyring’s theory which involves vibrating particles in a
lattice overcoming energy barriers to the consideration of deformation of irregularly
packed, dissipative granular material seems tenuous. Finally, it is noted that models
of structured continua, such as a Cosserat material (cf. Mühlhaus & Vardoulakis
1987; Vardoulakis & Sulem 1995) and strain-gradient theories (Fleck & Hutchinson
1997) also predict shear bands of finite thickness, but the writer is not aware of any
analyses of the vertical chute problem using such models.

4.1. Governing equations for vertical chute flow

The theory developed in §2 is now applied to treat the flow down a vertical channel.
Consider the x-coordinate to be vertical, increasing downward, and y to be directed
horizontally as shown in figure 8. For steady, fully developed, two-dimensional flow

∂/∂t = ∂/∂x = 0, (4.1)

and it follows that

u = u(y), v = 0, T = T (y), ν = ν(y). (4.2)

The continuity equation (2.11)

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
= 0 (4.3)

is identically satisfied. The x-component of the linear momentum equation (2.13) after
making use of (2.36) is

ρ
du

dt
= 0 = ρg +

∂σxx

∂x
+
∂σxy

∂y
= ρg +

∂

∂y

(
µ
∂u

∂y

)
, (4.4)

and the y-component is

ρ
dv

dt
= 0 =

∂σxy

∂x
+
∂σyy

∂y
=
∂σyy

∂y
. (4.5)

After making use of (2.36), the fluctuation energy equation (2.21) can be written as

ρ
dT

dt
= 0 = σxy

∂u

∂y
− ∂qy

∂y
− γ = µ

(
∂u

∂y

)2

+
∂

∂y

(
k
∂T

∂y

)
− γ. (4.6)
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We can integrate the x-momentum equation (4.4) to obtain

σxy = µ
∂u

∂y
= −

∫ y

0

ρg dy. (4.7)

Integrating the y-momentum equation (4.5) we obtain

σyy = const. = −a(ν, T ) = σxx. (4.8)

Note that the molecular dynamics computer simulations of Gutfraind & Pouliquen
(1996) found that the averaged normal stresses σxx and σyy were equal (within the
resolution of the numerical results) and approximately constant over the width of the
bin, as predicted by (4.8).

4.2. Boundary conditions

To proceed further with the analysis, we must take some account of the boundary
conditions at the centreline and at the sidewalls. The conditions at the centreline are
evident either from symmetry considerations (derivatives of velocity, solids fraction
and granular temperature with respect to y are zero), or are free to be chosen. The
boundary conditions at the sidewalls are more complex and a full consideration of
them would require a separate and detailed analysis similar to that derived above
for the interior. This situation is analogous to the case of rapid granular flows
where special analyses of the boundary conditions to determine slip velocities and
temperature jumps have been performed (cf. Hui et al. 1984; Gutt & Haff 1988;
Jenkins & Richman 1986; Richman 1988; Richman & Chou 1988; Johnson et al.
1990). We shall not pursue such calculations in the present paper, but merely calculate
u− us, the difference between the total velocity u and the wall slip velocity us, leaving
the wall slip velocities undetermined. Accepting this deficiency, it turns out that we
will be able to calculate all the other field variables necessary to describe the flow
field.

As an example, let us consider the case in which the channel half-width b is large
enough so that at the centreline the granular temperature T decays to zero. Hence,
we have the condition T (0) = 0. As just noted, the gradients with respect to y vanish
at the centreline; thus, u′(0) = ν ′(0) = T ′(0) = 0. To perform the numerical solution
for a specific example, we can stipulate the solids fraction at the centreline ν(0).

By applying (4.7) over the half-width b, we find that at the wall, y = b,

σxy

∣∣∣∣∣
w

= −
∫ b

0

ρg dy = −ρgb =

[
µ

du

dy

]
w

= σyy tan δ, (4.9)

where we have assumed that the wall shear stress can be expressed in terms of a wall
friction angle δ 6 arctan(sinφ). Since σyy = −a, this gives us a means to estimate a,
i.e.

a =
ρgb

tan δ
, (4.10)

and thence, to calculate the wall velocity gradient[
du

dy

]
w

=
−a tan δ

µw
. (4.11)

By applying the expression (2.47) for a(ν, T ) at the centreline where T (0) = 0, we
can determine the constant a0 that appears in (2.47). The granular temperature Tw at
the wall y = b can then be determined from (2.47).
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Figure 9. Variation of (a) velocity difference u − us, (b) granular temperature T , and (c) solids
fraction ν, with distance from sidewall b − y. Channel half-width b = 10d, wall solids fraction
νw = 0.86.

While we do have the expression a(ν, T )=const. fully specified, it is awkward to use
to find a solution to the system of equations for u, ν, and T . It is more direct to simply
numerically integrate the three ordinary differential equations: the x-momentum (4.4),
y-momentum (4.5), and fluctuation energy (4.6) equations for u, ν, and T .

This integration is reasonably straightforward to perform using the NDSolve routine
contained in the software system Mathematica 3.0 in a trial and error fashion. One
integrates in the direction of η = (b−y) from the wall (η = 0) to the centreline (η = b).

As described above, we can specify the boundary conditions for u, u′, ν and T at
the wall after making an initial estimate for the width-averaged density ρ in (4.10).
Then, by trial and error, we choose T ′ at the wall such that u′ = 0, ν ′ = 0 and T = 0
at the centreline. Now, having the solids fraction (density) profile, we can integrate
over the width to get a better estimate of ρ, and repeat the whole sequence of steps
until the solution has converged.

4.3. Numerical results

Several sets of computations were performed to predict the velocity, density and
granular temperature profiles; some typical solutions are shown below in figures 9–
12. All computations shown were carried out for a critical state internal friction
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Figure 10. Same as figure 9 except for channel half-width b = 20d.

angle φ = 20◦, a wall friction angle δ = 18.88◦, mass density of the particles of
ρs = 1000 kg m−3, particle diameter d = 5 mm, minimum solids fraction ν0 = 0.75
and maximum solids fraction ν∞ = 0.9.

Figures 9–11 show predictions for a wall solids fraction νw = 0.86, and a centreline
solids fraction ν = 0.89. Results for channel half-widths b = 10d, 20d and 40d are
shown in figures 9, 10 and 11 respectively. As noted previously, we did not calculate
the wall slip velocities us, and are only able to present the velocity difference u − us
versus distance from the sidewall (b− y). Boundary layers of velocity, concentration
and granular temperature develop next to the sidewalls. These boundary layers are
roughly 10 particle diameters thick, with the concentration boundary layer being
discernably larger than the velocity boundary layer. The thicknesses of the wall
boundary layers remain approximately constant and the central plug flow region
increases, as the overall channel width is increased. All of these results are similar to
what was observed in the laboratory experiments of Pouliquen & Gutfraind (1996)
and in the molecular dynamics computer simulations of Gutfraind & Pouliquen
(1996). As the channel width increases, the present analysis predicts that both the
velocity difference u− us, and the granular temperatures in the wall region increase.

Figure 12 shows predictions for a somewhat larger wall solids fraction νw = 0.87,
and a centreline solids fraction ν = 0.89. The increase in the wall solids fraction yields
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Figure 11. Same as figure 9 except for channel half-width b = 40d.

velocities and granular temperatures that are somewhat lower than the predictions
shown in figure 11 for νw = 0.86.

It should be mentioned that the computations have been performed by specifying
the wall solids fraction νw and then calculating the velocities that could be associated
with a total mass flow rate if we knew the wall slip velocity. In real physical
experiments, it is likely that the flow rate would be fixed by some kind of ‘control’
at the outlet of the channel and the wall solids fraction would adjust itself so as to
satisfy the equilibrium equations in the middle portion of the channel where there is
no variation of flow quantitites in the streamwise direction.

5. Concluding remarks
We have described a first attempt to develop a simple model to handle slow flows of

cohesionless, granular materials at relatively low stress levels. The basis of the model is
the introduction of strain-rate fluctuations (Hibler 1977) into a critical state plasticity
model that is similar in form to those proposed for quasi-static, pressure-dependent
yielding of soils. The root-mean-square values of the strain-rate fluctuations were
related to granular temperature. The forms of various expressions and constants
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Figure 12. Same as figure 11 except for wall solids fraction νw = 0.87.

involved in the model were chosen so that the predictions for high deformation rates
are consistent with the collisional, granular flow kinetic theory of Jenkins (1987a).

At low deformation rates, the apparent form of the constitutive behaviour is
similar to that of a liquid in the following sense. The effective viscosity decreases with
increasing granular temperature as opposed to rapid granular flows in which viscosity
increases with increasing granular temperature.

For the problem of simple shear flow, the resulting expressions for stresses were
comprised of two parts: a rate-independent part, and a part that has a quadratic
dependence on shear-rate. Similar Bingham like expressions have been proposed in
the past on a more ad hoc basis.

A second problem of slow flow in a rough walled, vertical channel was also consid-
ered. The analysis was able to reproduce the observed experimental characteristics of
nearly constant-thickness sidewall boundary layers (of about 10 particle diameters)
with plug flow in the centre, regardless of the gap between the vertical sidewalls. The
thickness of the solids fraction boundary layer was found to be larger than that of the
velocity boundary layer. This same kind of behaviour is observed in both laboratory
experiments and in molecular dynamics computer simulations.

The present analysis is merely a preliminary step to investigate the feasibility of the
approach. Only two-dimensional particles and flows have been considered and the
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analysis should be extended to handle three-dimensional situations. We have solved
the vertical chute flow problem without really considering the boundary conditions in
detail. A more complete analysis of wall boundary conditions should be performed
along the lines of what has been done in the case of kinetic theories of rapid granular
flows. In particular, the wall slip velocities should be determined. Finally, it would be
interesting to apply the present approach to consider other simple boundary value
problems such as the free-surface flow in rough inclined channels, and free-surface flow
down wedge-shaped piles of granular materials. This work is currently in progress.

Part of the work on this paper was carried out during a visit to the Institute
for Theoretical Geophysics, Department of Applied Mathematics and Theoretical
Physics, Cambridge University. I am grateful to Professors Herbert Huppert and
David Crighton for their hospitality and encouragement during my stay there. My
visit was made possible through the financial support of an NSERC International
Collaborative Research Grant sponsored by the Royal Society, London and NSERC.
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